NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. Riemann Integrals

Notation 1.1.

(i) : All functions $f, g, h \ldots$ are bounded real valued functions defined on $[a, b]$. And $m \leq f \leq M$.
(ii) : $\mathcal{P}: a=x_{0}<x_{1}<\ldots<x_{n}=b$ denotes a partition on $[a, b] ; \Delta x_{i}=x_{i}-x_{i-1}$ and $\|\mathcal{P}\|=\max \Delta x_{i}$.
(iii) $: M_{i}(f, \mathcal{P}):=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} ; m_{i}(f, \mathcal{P}):=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\}\right.\right.$. And $\omega_{i}(f, \mathcal{P})=$ $M_{i}(f, \mathcal{P})-m_{i}(f, \mathcal{P})$.
(iv) : $U(f, \mathcal{P}):=\sum M_{i}(f, \mathcal{P}) \Delta x_{i} ; L(f, \mathcal{P}):=\sum m_{i}(f, \mathcal{P}) \Delta x_{i}$.
(v) : $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right):=\sum f\left(\xi_{i}\right) \Delta x_{i}$, where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
(vi) : $\mathcal{R}[a, b]$ is the class of all Riemann integral functions on $[a, b]$.

Definition 1.2. We say that the Riemann $\operatorname{sum} \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to a number A as $\|\mathcal{P}\| \rightarrow 0$ if for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ whenever $\|\mathcal{P}\|<\delta$.
Theorem 1.3. $f \in \mathcal{R}[a, b]$ if and only if for any $\varepsilon>0$, there is a partition \mathcal{P} such that $U(f, \mathcal{P})-$ $L(f, \mathcal{P})<\varepsilon$.

Lemma 1.4. $f \in \mathcal{R}[a, b]$ if and only if for any $\varepsilon>0$, there is $\delta>0$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$ whenever $\|\mathcal{P}\|<\delta$.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over $[a, b]$. Let $\varepsilon>0$. Then there is a partition $\mathcal{Q}: a=y_{0}<\ldots<y_{l}=b$ on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$. Now take $0<\delta<\varepsilon / l$. Suppose that $\mathcal{P}: a=x_{0}<\ldots<x_{n}=b$ with $\|\mathcal{P}\|<\delta$. Then we have

$$
U(f, \mathcal{P})-L(f, \mathcal{P})=I+I I
$$

where

$$
I=\sum_{i: Q \cap\left(x_{i-1}, x_{i}\right)=\emptyset} \omega_{i}(f, \mathcal{P}) \Delta x_{i}
$$

and

$$
I I=\sum_{i: Q \cap\left(x_{i-1}, x_{i}\right) \neq \emptyset} \omega_{i}(f, \mathcal{P}) \Delta x_{i}
$$

Notice that we have

$$
I \leq U(f, \mathbb{Q})-L(f, \mathbb{Q})<\varepsilon
$$

and

$$
I I \leq(M-m) \sum_{i: Q \cap\left(x_{i-1}, x_{i}\right) \neq \emptyset} \Delta x_{i} \leq(M-m) \cdot l \cdot \frac{\varepsilon}{l}=(M-m) \varepsilon
$$

The proof is finished.

Theorem 1.5. $f \in \mathcal{R}[a, b]$ if and only if the Riemann sum $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ is convergent. In this case, $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $\|\mathcal{P}\| \rightarrow 0$.
Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, \mathcal{P}) \leq \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right) \leq U(f, \mathcal{P})
$$

and

$$
L(f, \mathcal{P}) \leq \int_{a}^{b} f(x) d x \leq U(f, \mathcal{P})
$$

for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ and for all partition \mathcal{P}.
Now let $\varepsilon>0$. Lemma 1.4 gives $\delta>0$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$ as $\|\mathcal{P}\|<\delta$. Then we have

$$
\left|\int_{a}^{b} f(x) d x-\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

as $\|\mathcal{P}\|<\delta$. The necessary part is proved and $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$.
For (\Leftarrow) : there exists a number A such that for any $\varepsilon>0$, there is $\delta>0$, we have

$$
A-\varepsilon<\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

for any partition \mathcal{P} with $\|\mathcal{P}\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now fix a partition \mathcal{P} with $\|\mathcal{P}\|<\delta$. Then for each $\left[x_{i-1}, x_{i}\right]$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}(f, \mathcal{P})-$ $\varepsilon \leq f\left(\xi_{i}\right)$. This implies that we have

$$
U(f, \mathcal{P})-\varepsilon(b-a) \leq \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

So we have shown that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
\begin{equation*}
\overline{\int_{a}^{b}} f(x) d x \leq U(f, \mathcal{P}) \leq A+\varepsilon(1+b-a) \tag{1.1}
\end{equation*}
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 1.1 will imply that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
A-\varepsilon(1+b-a) \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq A+\varepsilon(1+b-a)
$$

The proof is finished.
Theorem 1.6. Let $f \in \mathcal{R}[c, d]$ and let $\phi:[a, b] \longrightarrow[c, d]$ be a strictly increasing C^{1} function with $f(a)=c$ and $f(b)=d$.
Then $f \circ \phi \in \mathcal{R}[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

Proof. Let $A=\int_{c}^{d} f(x) d x$. By Theorem 1.5, we need to show that for all $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon
$$

for all $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ whenever $\mathcal{Q}: a=t_{0}<\ldots<t_{m}=b$ with $\|\mathbb{Q}\|<\delta$.
Now let $\varepsilon>0$. Then by Lemma 1.4 and Theorem 1.5, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|A-\sum f\left(\eta_{k}\right) \triangle x_{k}\right|<\varepsilon \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \omega_{k}(f, \mathcal{P}) \triangle x_{k}<\varepsilon \tag{1.3}
\end{equation*}
$$

for all $\eta_{k} \in\left[x_{k-1}, x_{k}\right]$ whenever $\mathcal{P}: c=x_{0}<\ldots<x_{m}=d$ with $\|\mathcal{P}\|<\delta_{1}$.
Now put $x=\phi(t)$ for $t \in[a, b]$.
Now since ϕ and ϕ^{\prime} are continuous on $[a, b]$, there is $\delta>0$ such that $\left|\phi(t)-\phi\left(t^{\prime}\right)\right|<\delta_{1}$ and $\mid \phi^{\prime}(t)-$ $\phi^{\prime}\left(t^{\prime}\right) \mid<\varepsilon$ for all t, t^{\prime} in $[a, b]$ with $\left|t-t^{\prime}\right|<\delta$.
Now let $\mathcal{Q}: a=t_{0}<\ldots<t_{m}=b$ with $\|\mathbb{Q}\|<\delta$. If we put $x_{k}=\phi\left(t_{k}\right)$, then $\mathcal{P}: c=x_{0}<\ldots<x_{m}=d$ is a partition on $[c, d]$ with $\|\mathcal{P}\|<\delta_{1}$ because ϕ is strictly increasing.
Note that the Mean Value Theorem implies that for each $\left[t_{k-1}, t_{k}\right]$, there is $\xi_{k}^{*} \in\left(t_{k-1}, t_{k}\right)$ such that

$$
\triangle x_{k}=\phi\left(t_{k}\right)-\phi\left(t_{k-1}\right)=\phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k} .
$$

This yields that

$$
\begin{equation*}
\left|\triangle x_{k}-\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon \triangle t_{k} \tag{1.4}
\end{equation*}
$$

for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ for all $k=1, \ldots, m$ because of the choice of δ.
Now for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{align*}
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| & \leq\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}\right| \\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \tag{1.5}\\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|
\end{align*}
$$

Notice that inequality 1.2 implies that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right|=\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \triangle x_{k}\right|<\varepsilon .
$$

Also, since we have $\left|\phi^{\prime}\left(\xi_{k}^{*}\right)-\phi^{\prime}\left(\xi_{k}\right)\right|<\varepsilon$ for all $k=1, . ., m$, we have

$$
\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq M(b-a) \varepsilon
$$

where $|f(x)| \leq M$ for all $x \in[c, d]$.
On the other hand, by using inequality 1.4 we have

$$
\left|\phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| \leq \triangle x_{k}+\varepsilon \triangle t_{k}
$$

for all k. This, together with inequality 1.3 imply that

$$
\begin{aligned}
& \left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \\
& \leq \sum \omega_{k}(f, \mathcal{P})\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|\left(\because \phi\left(\xi_{k}^{*}\right), \phi\left(\xi_{k}\right) \in\left[x_{k-1}, x_{k}\right]\right) \\
& \leq \sum \omega_{k}(f, \mathcal{P})\left(\triangle x_{k}+\varepsilon \triangle t_{k}\right) \\
& \leq \varepsilon+2 M(b-a) \varepsilon .
\end{aligned}
$$

Finally by inequality 1.5 , we have

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| \leq \varepsilon+M(b-a) \varepsilon+\varepsilon+2 M(b-a) \varepsilon .
$$

The proof is finished.
Example 1.7. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s>0$.

Proof. Put $I(s):=\int_{0}^{1} x^{s-1} e^{-x} d x$ and $I I(s):=\int_{1}^{\infty} x^{s-1} e^{-x} d x$. We first claim that the integral $I I(s)$ is convergent for all $s \in \mathbb{R}$.
In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim _{x \rightarrow \infty} \frac{x^{s-1}}{e^{x / 2}}=0
$$

So there is $M>1$ such that $\frac{x^{s-1}}{e^{x / 2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \leq \int_{M}^{\infty} x^{s-1} e^{-x} d x \leq \int_{M}^{\infty} e^{-x / 2} d x<\infty
$$

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s>0$.
Note that for $0<\eta<1$, we have

$$
0 \leq \int_{\eta}^{1} x^{s-1} e^{-x} d x \leq \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{1}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -\ln \eta & \text { otherwise }\end{cases}
$$

Thus the integral $I(s)=\lim _{\eta \rightarrow 0+} \int_{\eta}^{1} x^{s-1} e^{-x} d x$ is convergent if $s>0$.
Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} d x \geq e^{-1} \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{e^{-1}}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -e^{-1} \ln \eta & \text { otherwise }\end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} d x$ is divergent as $\eta \rightarrow 0+$. The result follows.

2. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 2.1. Let $f_{n}:(a, b) \longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:
(i) : $f_{n}(x)$ point-wise converges to a function $f(x)$ on (a, b);
(ii) : each f_{n} is a C^{1} function on (a, b);
(iii) : $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b).

Then f is a C^{1}-function on (a, b) with $f^{\prime}=g$.
Proof. Fix $c \in(a, b)$. Then for each x with $c<x<b$ (similarly, we can prove it in the same way as $a<x<c$), the Fundamental Theorem of Calculus implies that

$$
f_{n}(x)=\int_{c}^{x} f^{\prime}(t) d t
$$

Since $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b), we see that

$$
\int_{c}^{x} f_{n}^{\prime}(t) d t \longrightarrow \int_{c}^{x} g(t) d t
$$

This gives

$$
\begin{equation*}
f(x)=\int_{c}^{x} g(t) d t \tag{2.1}
\end{equation*}
$$

for all $x \in(c, b)$. On the other hand, g is continuous on (a, b) since each f_{n}^{\prime} is continuous and $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b). Equation 2.1 will tell us that f^{\prime} exists and $f^{\prime}=g$ on (c, b). The proof is finished.

Proposition 2.2. Let $\left(f_{n}\right)$ be a sequence of differentiable functions defined on (a, b). Assume that
(i): there is a point $c \in(a, b)$ such that $\lim f_{n}(c)$ exists;
(ii): f_{n}^{\prime} converges uniformly to a function g on (a, b).

Then
(a): f_{n} converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and $f^{\prime}=g$.

Proof. For Part (a), we will make use the Cauchy theorem.
Let $\varepsilon>0$. Then by the assumptions (i) and $(i i)$, there is a positive integer N such that

$$
\left|f_{m}(c)-f_{n}(c)\right|<\varepsilon \quad \text { and } \quad\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon
$$

for all $m, n \geq N$ and for all $x \in(a, b)$. Now fix $c<x<b$ and $m, n \geq N$. To apply the Mean Value Theorem for $f_{m}-f_{n}$ on (c, x), then there is a point ξ between c and x such that

$$
\begin{equation*}
f_{m}(x)-f_{n}(x)=f_{m}(c)-f_{n}(c)+\left(f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right)(x-c) \tag{2.2}
\end{equation*}
$$

This implies that

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq\left|f_{m}(c)-f_{n}(c)\right|+\left|f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right||x-c|<\varepsilon+(b-a) \varepsilon
$$

for all $m, n \geq N$ and for all $x \in(c, b)$. Similarly, when $x \in(a, c)$, we also have

$$
\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon+(b-a) \varepsilon
$$

So Part (a) follows.
Let f be the uniform limit of $\left(f_{n}\right)$ on (a, b)
For Part (b), we fix $u \in(a, b)$. We are going to show

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u)
$$

Let $\varepsilon>0$. Since $f_{n} \rightarrow f$ and $f^{\prime} \rightarrow g$ both are uniformly convergent on (a, b). Then there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon \quad \text { and } \quad\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon \tag{2.3}
\end{equation*}
$$

for all $m, n \geq N$ and for all $x \in(a, b)$
Note that for all $m \geq N$ and $x \in(a, b) \backslash\{u\}$, applying the Mean value Theorem for $f_{m}-f_{N}$ as before, we have

$$
\frac{f_{m}(x)-f_{N}(x)}{x-u}=\frac{f_{m}(u)-f_{N}(u)}{x-u}+\left(f_{m}^{\prime}(\xi)-f_{N}^{\prime}(\xi)\right)
$$

for some ξ between u and x.
So Eq.2.3 implies that

$$
\begin{equation*}
\left|\frac{f_{m}(x)-f_{m}(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon \tag{2.4}
\end{equation*}
$$

for all $m \geq N$ and for all $x \in(a, b)$ with $x \neq u$.
Taking $m \rightarrow \infty$ in Eq.2.4, we have

$$
\left|\frac{f(x)-f(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon
$$

Hence we have

$$
\begin{aligned}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| & \leq\left|\frac{f(x)-f(u)}{x-c}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right|+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right| \\
& \leq \varepsilon+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|
\end{aligned}
$$

So if we can take $0<\delta$ such that $\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|<\varepsilon$ for $0<|x-u|<\delta$, then we have

$$
\begin{equation*}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| \leq 2 \varepsilon \tag{2.5}
\end{equation*}
$$

for $0<|x-u|<\delta$. On the other hand, by the choice of N, we have $\left|f_{m}^{\prime}(y)-f_{N}^{\prime}(y)\right|<\varepsilon$ for all $y \in(a, b)$ and $m \geq N$. So we have $\left|g(u)-f_{N}^{\prime}(u)\right| \leq \varepsilon$. This together with Eq.2.5 give

$$
\left|\frac{f(x)-f(u)}{x-u}-g(u)\right| \leq 3 \varepsilon
$$

as $0<|x-u|<\delta$, that is we have

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u)
$$

The proof is finished.

Remark 2.3. The uniform convergence assumption of $\left(f_{n}^{\prime}\right)$ in Propositions 2.1 and 2.2 is essential.
Example 2.4. Let $f_{n}(x):=\tan ^{-1} n x$ for $x \in(-1,1)$. Then we have

$$
f(x):=\lim _{n} \tan ^{-1} n x= \begin{cases}\pi / 2 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -\pi / 2 & \text { if } x<0\end{cases}
$$

Also $g(x):=\lim _{n} f_{n}^{\prime}(x)=\lim _{n} 1 /\left(1+n^{2} x^{2}\right)=0$ for all $x \in(-1,1)$. So Propositions 2.1 and 2.2 does not hold. Note that $\left(f_{n}^{\prime}\right)$ does not converge uniformly to g on $(-1,1)$.

3. Absolutely convergent series

Throughout this section, let $\left(a_{n}\right)$ be a sequence of complex numbers.
Definition 3.1. We say that a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$.
Also a convergent series $\sum_{n=1}^{\infty} a_{n}$ is said to be conditionally convergent if it not absolute convergent.
Example 3.2. Important Example : The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ is conditionally convergent when $0<\alpha \leq 1$.
This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.
For instance, if we consider the function $f:[1, \infty) \longrightarrow \mathbb{R}$ given by

$$
f(x)=\frac{(-1)^{n+1}}{n^{\alpha}} \quad \text { if } \quad n \leq x<n+1
$$

If $\alpha=1 / 2$, then $\int_{1}^{\infty} f(x) d x$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 3.3. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots$.$\} be a bijection. A formal series \sum_{n=1}^{\infty} a_{\sigma(n)}$ is called an rearrangement of $\sum_{n=1}^{\infty} a_{n}$.

Example 3.4. In this example, we are going to show that there is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.
We first notice that the series $\sum_{i} \frac{1}{2 i-1}$ diverges to infinity. Thus for each $M>0$, there is a positive integer N such that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2 i-1} \geq M \tag{*}
\end{equation*}
$$

for all $n \geq N$. Then there is $N_{1} \in \mathbb{N}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}>1
$$

By using (*) again, there is a positive integer N_{2} with $N_{1}<N_{2}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}>2
$$

To repeat the same procedure, we can find a positive integers subsequence $\left(N_{k}\right)$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}+\cdots \cdots \cdots-\sum_{N_{k-1}<i \leq N_{k}} \frac{1}{2 i-1}-\frac{1}{2 k}>k
$$

for all positive integers k. So if we let $a_{n}=\frac{(-1)^{n+1}}{n}$, then one can find a bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ and diverges to infinity. The proof is finished.
Theorem 3.5. Let $\sum_{n=1}^{\infty} a_{n}$ be an absolutely convergent series. Then for any rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is also absolutely convergent. Moreover, we have $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{\sigma(n)}$.
Proof. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots\}$ be a bijection as before.
We first claim that $\sum_{n} a_{\sigma(n)}$ is also absolutely convergent.
Let $\varepsilon>0$. Since $\sum_{n}\left|a_{n}\right|<\infty$, there is a positive integer N such that

$$
\begin{equation*}
\left|a_{N+1}\right|+\cdots \cdots \cdots+\left|a_{N+p}\right|<\varepsilon \tag{*}
\end{equation*}
$$

for all $p=1,2 \ldots$. Notice that since σ is a bijection, we can find a positive integer M such that $M>\max \{j: 1 \leq \sigma(j) \leq N\}$. Then $\sigma(i) \geq N$ if $i \geq M$. This together with (*) imply that if $i \geq M$ and $p \in \mathbb{N}$, we have

$$
\left|a_{\sigma(i+1)}\right|+\cdots \cdots \cdots \cdot\left|a_{\sigma(i+p)}\right|<\varepsilon .
$$

Thus the series $\sum_{n} a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria.
Finally we claim that $\sum_{n} a_{n}=\sum_{n} a_{\sigma(n)}$. Put $l=\sum_{n} a_{n}$ and $l^{\prime}=\sum_{n} a_{\sigma(n)}$. Now let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that

$$
\left|l-\sum_{n=1}^{N} a_{n}\right|<\varepsilon \quad \text { and } \quad\left|a_{N+1}\right|+\cdots \cdots+\left|a_{N+p}\right|<\varepsilon \cdots \cdots \cdots(* *)
$$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$ and $\left|l^{\prime}-\sum_{i=1}^{M} a_{\sigma(i)}\right|<\varepsilon$. Notice that since we have $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$, the condition (**) gives

$$
\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right| \leq \sum_{N<i<\infty}\left|a_{i}\right| \leq \varepsilon .
$$

We can now conclude that

$$
\left|l-l^{\prime}\right| \leq\left|l-\sum_{n=1}^{N} a_{n}\right|+\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right|+\left|\sum_{i=1}^{M} a_{\sigma(i)}-l^{\prime}\right| \leq 3 \varepsilon .
$$

The proof is complete.

4. Power series

Throughout this section, let

$$
\begin{equation*}
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \tag{*}
\end{equation*}
$$

denote a formal power series, where $a_{i} \in \mathbb{R}$.
Lemma 4.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that $f(c)$ is convergent. Then
(i): $f(x)$ is absolutely convergent for all x with $|x|<|c|$.
(ii) : f converges uniformly on $[-\eta, \eta]$ for any $0<\eta<|c|$.

Proof. For Part (i), note that since $f(c)$ is convergent, then $\lim a_{n} c^{n}=0$. So there is a positive integer N such that $\left|a_{n} c^{n}\right| \leq 1$ for all $n \geq N$. Now if we fix $|x|<|c|$, then $|x / c|<1$. Therefore, we have

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|\left|x^{n}\right| \leq \sum_{n=1}^{N-1}\left|a _ { n } \left\|x^{n}\left|+\sum_{n \geq N}\right| a_{n} c^{n}| | x /\left.c\right|^{n} \leq \sum_{n=1}^{N-1}\left|a_{n} \| x^{n}\right|+\sum_{n \geq N}|x / c|^{n}<\infty\right.\right.
$$

So Part (i) follows.
Now for Part (ii), if we fix $0<\eta<|c|$, then $\left|a_{n} x^{n}\right| \leq\left|a_{n} \eta\right|^{n}$ for all n and for all $x \in[-\eta, \eta]$. On the other hand, we have $\sum_{n}\left|a_{n} \eta^{n}\right|<\infty$ by Part (i). So f converges uniformly on [$-\eta, \eta$] by the M-test. The proof is finished.

Remark 4.2. In Lemma 4.9(ii), notice that if $f(c)$ is convergent, it does not imply f converges uniformly on $[-c, c]$ in general.
For example, $f(x):=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. Then $f(-1)$ is convergent but $f(1)$ is divergent.
Definition 4.3. Call the set $\operatorname{dom} f:=\{x \in \mathbb{R}: f(c)$ is convergent $\}$ the domain of convergence of f for convenience. Let $0 \leq r:=\sup \{|c|: c \in \operatorname{dom} f\} \leq \infty$. Then r is called the radius of convergence of f.

Remark 4.4. Notice that by Lemma 4.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0<r<\infty$.
When $r=0$, then $\operatorname{dom} f=\{0\}$.
Finally, if $r=\infty$, then $\operatorname{dom} f=\mathbb{R}$.

Example 4.5. If $f(x)=\sum_{n=0}^{\infty} n!x^{n}$, then $r=(0)$. In fact, notice that if we fix a non-zero number x and consider $\lim _{n}\left|(n+1)!x^{n+1}\right| /\left|n!x^{n}\right|=\infty$, then by the ratio test $f(x)$ must be divergent for any $x \neq 0$. So $r=0$ and dom $f=(0)$.

Example 4.6. Let $f(x)=1+\sum_{n=1}^{\infty} x^{n} / n^{n}$. Notice that we have $\lim _{n}\left|x^{n} / n^{n}\right|^{1 / n}=0$ for all x. So the root test implies that $f(x)$ is convergent for all x and then $r=\infty$ and dom $f=\mathbb{R}$.

Example 4.7. Let $f(x)=1+\sum_{n=1}^{\infty} x^{n} / n$. Then $\lim _{n}\left|x^{n+1} /(n+1)\right| \cdot\left|n / x^{n}\right|=|x|$ for all $x \neq 0$. So by the ration test, we see that if $|x|<1$, then $f(x)$ is convergent and if $|x|>1$, then $f(x)$ is divergent. So $r=1$. Also, it is known that $f(1)$ is divergent but $f(-1)$ is divergent. Therefore, we have dom $f=[-1,1)$.

Example 4.8. Let $f(x)=\sum x^{n} / n^{2}$. Then by using the same argument of Example 4.7, we have $r=1$. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom $f=[-1,1]$.

Lemma 4.9. With the notation as above, if $r>0$, then f converges uniformly on $(-\eta, \eta)$ for any $0<\eta<r$.

Proof. It follows from Lemma 4.1 at once.

Remark 4.10. Note that the Example 4.7 shows us that f may not converge uniformly on $(-r, r)$. In fact let f be defined as in Example 4.7. Then f does not converges on $(-1,1)$. In fact, if we let $s_{n}(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, then for any positive integer n and $0<x<1$, we have

$$
\left|s_{2 n}(x)-s_{n}(x)\right|=\frac{x^{n+1}}{n+1}+\cdots \cdots+\frac{x^{n}}{2 n}
$$

From this we see that if n is fixed, then $\left|s_{2 n}(x)-s_{n}(x)\right| \rightarrow 1 / 2$ as $x \rightarrow 1-$. So for each n, we can find $0<x<1$ such that $\left|s_{2 n}(x)-s_{n}(x)\right|>\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$. Thus f does not converges uniformly on $(-1,1)$ by the Cauchy Theorem.

Proposition 4.11. With the notation as above, let $\ell=\overline{\lim }\left|a_{n}\right|^{1 / n}$ or $\lim \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ provided it exists. Then

$$
r= \begin{cases}\frac{1}{\ell} & \text { if } 0<\ell<\infty \\ 0 & \text { if } \ell=\infty \\ \infty & \text { if } \ell=0\end{cases}
$$

Proposition 4.12. With the notation as above if $0<r \leq \infty$, then $f \in C^{\infty}(-r, r)$. Moreover, the k-derivatives $f^{(k)}(x)=\sum_{n \geq k} a_{k} n(n-1)(n-2) \cdots \cdots(n-k+1) x^{n-k}$ for all $x \in(-r, r)$.

Proof. Fix $c \in(-r, r)$. By Lemma 4.9, one can choose $0<\eta<r$ such that $c \in(-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.
It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \geq 0$. Consider the case $k=1$ first.
If we consider the series $\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$, then it also has the same radius r because $\lim _{n}\left|n a_{n}\right|^{1 / n}=\lim _{n}\left|a_{n}\right|^{1 / n}$. This implies that the series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges uniformly on $(-\eta, \eta)$. Therefore, the restriction $f(-\eta, \eta)$ is differentiable. In particular, $f^{\prime}(c)$ exists and $f^{\prime}(c)=\sum_{n=1}^{\infty} n a_{n} c^{n-1}$.
So the result can be shown inductively on k.

Proposition 4.13. With the notation as above, suppose that $r>0$. Then we have

$$
\int_{0}^{x} f(t) d t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} d t=\sum_{0}^{\infty} \frac{1}{n+1} a_{n} x^{n+1}
$$

for all $x \in(-r, r)$.
Proof. Fix $0<x<r$. Then by Lemma $4.9 f$ converges uniformly on $[0, x]$. Since each term $a_{n} t^{n}$ is continuous, the result follows.

Theorem 4.14. (Abel) : With the notation as above, suppose that $0<r$ and $f(r)$ (or $f(-r))$ exists. Then f is continuous at $x=r($ resp. $x=-r)$, that is $\lim _{x \rightarrow r-} f(x)=f(r)$.
Proof. Note that by considering $f(-x)$, it suffices to show that the case $x=r$ holds.
Assume $r=1$.
Notice that if f converges uniformly on $[0,1]$, then f is continuous at $x=1$ as desired.
Let $\varepsilon>0$. Since $f(1)$ is convergent, then there is a positive integer such that

$$
\left|a_{n+1}+\cdots \cdots \cdots+a_{n+p}\right|<\varepsilon
$$

for $n \geq N$ and for all $p=1,2 \ldots$ Note that for $n \geq N ; p=1,2 \ldots$ and $x \in[0,1]$, we have

$$
\begin{align*}
s_{n+p}(x)-s_{n}(x) & =a_{n+1} x^{n+1}+a_{n+2} x^{n+1}+a_{n+3} x^{n+1}+\cdots \cdots \cdots+a_{n+p} x^{n+1} \\
& +a_{n+2}\left(x^{n+2}-x^{n+1}\right)+a_{n+3}\left(x^{n+2}-x^{n+1}\right)+\cdots \cdots \cdots+a_{n+p}\left(x^{n+2}-x^{n+1}\right) \\
& +a_{n+3}\left(x^{n+3}-x^{n+2}\right)+\cdots \cdots \cdots+a_{n+p}\left(x^{n+3}-x^{n+2}\right) \tag{4.1}\\
& \vdots \\
& +a_{n+p}\left(x^{n+p}-x^{n+p-1}\right)
\end{align*}
$$

Since $x \in[0,1],\left|x^{n+k+1}-x^{n+k}\right|=x^{n+k}-x^{n+k+1}$. So the Eq.4.1 implies that
$\left|s_{n+p}(x)-s_{n}(x)\right| \leq \varepsilon\left(x_{n+1}+\left(x^{n+1}-x^{n+2}\right)+\left(x^{n+2}-x^{n+3}\right)+\cdots+\left(x^{n+p-1}-x^{n+p}\right)\right)=\varepsilon\left(2 x^{n+1}-x^{n+p}\right) \leq 2 \varepsilon$.
So f converges uniformly on $[0,1]$ as desired.
Finally for the general case, we consider $g(x):=f(r x)=\sum_{n} a_{n} r^{n} x^{n}$. Note that $\lim _{n}\left|a_{n} r^{n}\right|^{1 / n}=1$ and $g(1)=f(r)$. Then by the case above,, we have shown that

$$
f(r)=g(1)=\lim _{x \rightarrow 1-} g(x)=\lim _{x \rightarrow r-} f(x)
$$

The proof is finished.
Remark 4.15. In Remark 4.10, we have seen that f may not converges uniformly on $(-r, r)$. However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on $[-r, r]$ in this case.

5. Real analytic functions

Proposition 5.1. Let $f \in C^{\infty}(a, b)$ and $c \in(a, b)$. Then for any $x \in(a, b) \backslash\{c\}$ and for any $n \in \mathbb{N}$, there is $\xi=\xi(x, n)$ between c and x such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

Call $\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$ (may not be convergent) the Taylor series of f at c.
Proof. It is easy to prove by induction on n and the integration by part.

Definition 5.2. A real-valued function f defined on (a, b) is said to be real analytic if for each $c \in(a, b)$, one can find $\delta>0$ and a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k} \tag{*}
\end{equation*}
$$

for all $x \in(c-\delta, c+\delta) \subseteq(a, b)$.

Remark 5.3.

(i) : Concerning about the definition of a real analytic function f, the expression (*) above is uniquely determined by f, that is, each coefficient a_{k} 's is uniquely determined by f. In fact, by Proposition 4.12, we have seen that $f \in C^{\infty}(a, b)$ and

$$
\begin{equation*}
a_{k}=\frac{f^{(k)}(c)}{k!} \tag{**}
\end{equation*}
$$

for all $k=0,1,2, \ldots$
(ii) : Although every real analytic function is C^{∞}, the following example shows that the converse does not hold.
Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0)=0$ for all $k=0,1,2 \ldots$ So if f is real analytic, then there is $\delta>0$ such that $a_{k}=0$ for all k by the Eq. $(* *)$ above and hence $f(x) \equiv 0$ for all $x \in(-\delta, \delta)$. It is absurd.
(iii) Interesting Fact : Let D be an open disc in \mathbb{C}. A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞}.

Proposition 5.4. Suppose that $f(x):=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ is convergent on some open interval I centered at c, that is $I=(c-r, c+r)$ for some $r>0$. Then f is analytic on I.
Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation $x-c$, we may assume that $c=0$. Now fix $z \in I$. Now choose $\delta>0$ such that $(z-\delta, z+\delta) \subseteq I$. We are going to show that

$$
f(x)=\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!}(x-z)^{j}
$$

for all $x \in(z-\delta, z+\delta)$.
Notice that $f(x)$ is absolutely convergent on I. This implies that

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} a_{k}(x-z+z)^{k} \\
& =\sum_{k=0}^{\infty} a_{k} \sum_{j=0}^{k} \frac{k(k-1) \cdots \cdots(k-j+1)}{j!}(x-z)^{j} z^{k-j} \\
& =\sum_{j=0}^{\infty}\left(\sum_{k \geq j} k(k-1) \cdots \cdots(k-j+1) a_{k} z^{k-j}\right) \frac{(x-z)^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!}(x-z)^{j}
\end{aligned}
$$

for all $x \in(z-\delta, z+\delta)$. The proof is finished.

Example 5.5. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln (1+x)}$ for $x>-1$.
Now for each $k \in \mathbb{N}$, put

$$
\binom{\alpha}{k}= \begin{cases}\frac{\alpha(\alpha-1) \cdots \cdots(\alpha-k+1)}{k!} & \text { if } k \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Then

$$
f(x):=(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

whenever $|x|<1$.
Consequently, $f(x)$ is analytic on $(-1,1)$.

Proof. Notice that $f^{(k)}(x)=\alpha(\alpha-1) \cdots \cdots(\alpha-k+1)(1+x)^{\alpha-k}$ for $|x|<1$.
Fix $|x|<1$. Then by Proposition 5.1, for each positive integer n we have

$$
f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k}+\int_{0}^{x} \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1} d t
$$

So by the mean value theorem for integrals, for each positive integer n, there is ξ_{n} between 0 and x such that

$$
\int_{0}^{x} \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1} d t=\frac{f^{(n)}\left(\xi_{n}\right)}{(n-1)!}\left(x-\xi_{n}\right)^{n-1} x
$$

Now write $\xi_{n}=\eta_{n} x$ for some $0<\eta_{n}<1$ and $R_{n}(x):=\frac{f^{(n)}\left(\xi_{n}\right)}{(n-1)!}\left(x-\xi_{n}\right)^{n-1} x$. Then
$R_{n}(x)=(\alpha-n+1)\binom{\alpha}{n-1}\left(1+\eta_{n} x\right)^{\alpha-n}\left(x-\eta_{n} x\right)^{n-1} x=(\alpha-n+1)\binom{\alpha}{n-1} x^{n}\left(1+\eta_{n} x\right)^{\alpha-1}\left(\frac{1-\eta_{n}}{1+\eta_{n} x}\right)^{n-1}$.
We need to show that $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$, that is the Taylor series of f centered at 0 converges to f. By the Ratio Test, it is easy to see that the series $\sum_{k=0}^{\infty}(\alpha-k+1)\binom{\alpha}{k} y^{k}$ is convergent as $|y|<1$.
This tells us that the series $\lim _{n}\left|(\alpha-n+1)\binom{\alpha}{n} x^{n}\right|=0$.
On the other hand, note that we always have $0<1-\eta_{n}<1+\eta_{n} x$ for all n because $x>-1$. Thus, we
can now conclude that $R_{n}(x) \rightarrow 0$ as $|x|<1$. The proof is finished. Finally the last assertion follows from Proposition 5.4 at once. The proof is complete.

References

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong E-mail address: cwleung@math.cuhk.edu.hk

